|
First order convergence of weak Wong–Zakai approximations of Lévy-driven Marcus SDEs
Tetyana Kosenkovaa, Alexei Kulikb, Ilya Pavlyukevichc a Institute of Mathematics, University of Potsdam, Campus Golm, Karl--Liebknecht--Strasse 24--25, 14476 Potsdam, Germany
b Wroclaw University of Science and Technology Faculty of Pure and Applied Mathematics, Wybrzeże Wyspiańskiego Str. 27, 50-370 Wroclaw, Poland
c Institute of Mathematics, Friedrich Schiller University Jena, Ernst–Abbe–Platz 2, 07743
Jena, Germany
Аннотация:
For solutions $X=(X_t)_{t\in[0,T]}$ of a Lévy-driven Marcus (canonical) stochastic differential equation we study the Wong–Zakai type time discrete approximations $\bar X=(\bar X_{kh})_{0\leq k\leq T/h}$, $h>0$, and establish the first order convergence $|\mathbf{E}_x f(X_T)-\mathbf{E}_x f(X^h_T)|\leq C h$ for $f\in C_b^4$.
Ключевые слова:
Lévy process, Marcus (canonical) stochastic differential equation, Wong–Zakai approximation, first order convergence, Euler scheme.
Образец цитирования:
Tetyana Kosenkova, Alexei Kulik, Ilya Pavlyukevich, “First order convergence of weak Wong–Zakai approximations of Lévy-driven Marcus SDEs”, Theory Stoch. Process., 24(40):2 (2019), 32–60
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/thsp305 https://www.mathnet.ru/rus/thsp/v24/i2/p32
|
Статистика просмотров: |
Страница аннотации: | 158 | PDF полного текста: | 116 | Список литературы: | 26 |
|