|
A limit theorem for symmetric Markovian random evolution in
Rm
Alexander D. Kolesnik Institute of Mathematics and Computer Science, 5, Academy Str., MD-2028 Kishinev, Moldova
Аннотация:
We consider the symmetric Markovian random evolution X(t) performed by a particle
that moves with constant finite speed c in the Euclidean space Rm,m≥2(t). Its motion
is subject to the control of a homogeneous Poisson process of rate λ>0. We show
that, under the Kac condition c→∞,λ→∞,(c2/λ)−ρ,ρ>0, the transition
density of X(t) converges to the transition density of the homogeneous Wiener process
with zero drift and the diffusion coefficient σ2=2ρ/m.
Ключевые слова:
Random motion, finite speed, random evolution, uniformly distributed directions, multidimensional Wiener process.
Образец цитирования:
Alexander D. Kolesnik, “A limit theorem for symmetric Markovian random evolution in
Rm”, Theory Stoch. Process., 14(30):1 (2008), 69–75
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/thsp130 https://www.mathnet.ru/rus/thsp/v14/i1/p69
|
Статистика просмотров: |
Страница аннотации: | 155 | PDF полного текста: | 41 | Список литературы: | 31 |
|