Theoretical and Applied Mechanics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Theor. Appl. Mech.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Theoretical and Applied Mechanics, 2020, том 47, выпуск 1, страницы 1–17
DOI: https://doi.org/10.2298/TAM200204006V
(Mi tam73)
 

Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)

Thermodynamically consistent gradient elasticity with an internal variable

Peter Vánabc

a Wigner Research Centre for Physics, Department of Theoretical Physics, Budapest, Hungary
b Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Energy Engineering, Budapest, Hungary
c Montavid Thermodynamic Research Group, Budapest, Hungary
Список литературы:
Аннотация: The role of thermodynamics in continuum mechanics and the derivation of proper constitutive relations is a topic discussed in Rational Mechanics. The classical literature did not use the accumulated knowledge of thermostatics and was very critical of the heuristic methods of irreversible thermodynamics. In this paper, a small strain gradient elasticity theory is constructed with memory effects and dissipation. The method is nonequilibrium thermodynamics with internal variables; therefore, the constitutive relations are compatible with thermodynamics by construction. The thermostatic Gibbs relation is introduced for elastic bodies with a single tensorial internal variable. The thermodynamic potentials are first-order weakly nonlocal, and the entropy production is calculated. The constitutive functions and the evolution equation of the internal variable are then constructed. The second law analysis has shown a contribution of gradient terms to the stress, also without dissipation.
Ключевые слова: nonequilibrium thermodynamics, generalised continua, gradient elasticity.
Финансовая поддержка Номер гранта
Hungarian National Research, Development and Innovation Office 124366 (124508)
123815
TUDFO/ 51757/2019-ITM
FIEK-16-1-2016-0007
Ministry of Human Capacities of Hungary BME FIKP-NANO
The work was supported by the grants of the National Research, Development and Innovation Office - NKFIH 124366 (124508), 123815, TUDFO/51757/2019-ITM (Thematic Excellence Program) and FIEK-16-1-2016-0007. The research reported in this paper was supported by the Higher Education Excellence Program of the Ministry of Human Capacities within the framework of the Nanotechnology research area of the Budapest University of Technology and Economics (BME FIKP-NANO).
Поступила в редакцию: 04.02.2020
Исправленный вариант: 27.05.2020
Реферативные базы данных:
Тип публикации: Статья
MSC: 74A15, 74A60
Язык публикации: английский
Образец цитирования: Peter Ván, “Thermodynamically consistent gradient elasticity with an internal variable”, Theor. Appl. Mech., 47:1 (2020), 1–17
Цитирование в формате AMSBIB
\RBibitem{Van20}
\by Peter~V\'an
\paper Thermodynamically consistent gradient elasticity with an internal variable
\jour Theor. Appl. Mech.
\yr 2020
\vol 47
\issue 1
\pages 1--17
\mathnet{http://mi.mathnet.ru/tam73}
\crossref{https://doi.org/10.2298/TAM200204006V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000564166900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85089285392}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/tam73
  • https://www.mathnet.ru/rus/tam/v47/i1/p1
  • Эта публикация цитируется в следующих 3 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Theoretical and Applied Mechanics
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024