|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
Note on a ball rolling over a sphere: integrable Chaplygin system with an invariant measure without Chaplygin Hamiltonization
Božidar Jovanović Mathematical Institute SANU, Belgrade, Serbia
Аннотация:
In this note we consider the nonholonomic problem of rolling without slipping and twisting of an $n$-dimensional balanced ball over a fixed sphere.
This is a $SO(n)$–Chaplygin system with an invariant measure that reduces to the cotangent bundle $T^*S^{n-1}$.
For the rigid body inertia operator $\mathbb I\omega=I\omega+\omega I$, $I=\operatorname{diag}(I_1,\dots,I_n)$ with a symmetry $I_1=I_2=\dots=I_{r} \ne I_{r+1}=I_{r+2}=\dots=I_n$, we prove that the reduced system is integrable, general trajectories are quasi-periodic, while for $r\ne 1,n-1$ the Chaplygin reducing multiplier method does not apply.
Ключевые слова:
nonholonomic Chaplygin systems, invariant measure, integrability.
Поступила в редакцию: 22.03.2019 Исправленный вариант: 17.04.2019
Образец цитирования:
Božidar Jovanović, “Note on a ball rolling over a sphere: integrable Chaplygin system with an invariant measure without Chaplygin Hamiltonization”, Theor. Appl. Mech., 46:1 (2019), 97–108
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tam57 https://www.mathnet.ru/rus/tam/v46/i1/p97
|
|