|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
Hamiltonisation, measure preservation and first integrals of the multi-dimensional rubber Routh sphere
Luis C. García-Naranjo Departamento de Matemáticas y Mecánica, IIMAS-UNAM, Mexico City, Mexico
Аннотация:
We consider the multi-dimensional generalisation of the problem of a sphere, with axi-symmetric mass distribution, that rolls without slipping or spinning over a plane. Using recent results from García-Naranjo [21] and García-Naranjo and Marrero [22], we show that the reduced equations of motion possess an invariant measure and may be represented in Hamiltonian form by Chaplygin's reducing multiplier method.
We also prove a general result on the existence of first integrals for certain Hamiltonisable Chaplygin systems with internal symmetries that is used to determine conserved quantities of the problem.
Ключевые слова:
nonholonomic systems, Hamiltonisation, multi-dimensional rigid body dynamics, symmetries and reduction, Chaplygin systems.
Поступила в редакцию: 30.01.2019 Исправленный вариант: 07.04.2019
Образец цитирования:
Luis C. García-Naranjo, “Hamiltonisation, measure preservation and first integrals of the multi-dimensional rubber Routh sphere”, Theor. Appl. Mech., 46:1 (2019), 65–88
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tam55 https://www.mathnet.ru/rus/tam/v46/i1/p65
|
Статистика просмотров: |
Страница аннотации: | 154 | PDF полного текста: | 42 | Список литературы: | 24 |
|