Loading [MathJax]/jax/output/SVG/config.js
Theoretical and Applied Mechanics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Theor. Appl. Mech.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Theoretical and Applied Mechanics, 2016, том 43, выпуск 1, страницы 19–32
DOI: https://doi.org/10.2298/TAM150723002J
(Mi tam4)
 

Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)

Analysis of the brachistochronic motion of a variable mass nonholonomic mechanical system

Bojan Jeremić, Radoslav Radulović, Aleksandar Obradović

Department of Mechanics, Faculty of Mechanical Engineering, University of Belgrade, Belgrade, Serbia
Список литературы:
Аннотация: The paper considers the brachistochronic motion of a variable mass nonholonomic mechanical system [3] in a horizontal plane, between two specified positions. Variable mass particles are interconnected by a lightweight mechanism of the ‘pitchfork’ type. The law of the time-rate of mass variation of the particles, as well as relative velocities of the expelled particles, as a function of time, are known. Differential equations of motion, where the reactions of nonholonomic constraints and control forces figure, are created based on the general theorems of dynamics of a variable mass mechanical system [5]. The formulated brachistochrone problem, with adequately chosen quantities of state, is solved, in this case, as the simplest task of optimal control by applying Pontryagin's maximum principle [1]. A corresponding two-point boundary value problem (TPBVP) of the system of ordinary nonlinear differential equations is obtained, which, in a general case, has to be numerically solved [2]. On the basis of thus obtained brachistochronic motion, the active control forces, along with the reactions of nonholonomic constraints, are determined. The analysis of the brachistochronic motion for different values of the initial position of a variable mass particle $B$ is presented. Also, the interval of values of the initial position of a variable mass particle $B$, for which there are the TPBVP solutions, is determined.
Ключевые слова: brachistochrone, variable mass, nonholonomic system, Pontryagin's maximum principle, optimal control.
Поступила в редакцию: 23.07.2015
Исправленный вариант: 04.04.2016
Реферативные базы данных:
Тип публикации: Статья
MSC: 49K15, 49M30
Язык публикации: английский
Образец цитирования: Bojan Jeremić, Radoslav Radulović, Aleksandar Obradović, “Analysis of the brachistochronic motion of a variable mass nonholonomic mechanical system”, Theor. Appl. Mech., 43:1 (2016), 19–32
Цитирование в формате AMSBIB
\RBibitem{JerRadObr16}
\by Bojan~Jeremi\'c, Radoslav~Radulovi\'c, Aleksandar~Obradovi\'c
\paper Analysis of the brachistochronic motion of a variable mass nonholonomic mechanical system
\jour Theor. Appl. Mech.
\yr 2016
\vol 43
\issue 1
\pages 19--32
\mathnet{http://mi.mathnet.ru/tam4}
\crossref{https://doi.org/10.2298/TAM150723002J}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000379668900002}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/tam4
  • https://www.mathnet.ru/rus/tam/v43/i1/p19
  • Эта публикация цитируется в следующих 3 статьяx:
    1. Yevhen Kalinin, Yevhen Medvediev, Sergiy Lebedev, Heorhii Kuchuk, Nina Kuchuk, Lecture Notes in Networks and Systems, 1129, International Conference on Reliable Systems Engineering (ICoRSE) - 2024, 2024, 179  crossref
    2. Do Dang Khoa, Tran Si Kien, Phan Dang Phong, Do Sanh, Mechanisms and Machine Science, 113, Advances in Asian Mechanism and Machine Science, 2022, 123  crossref
    3. Bojan Jeremić, Radoslav Radulović, Aleksandar Obradović, Slaviša Šalinić, Milan Dražić, “Brachistochronic motion of a nonholonomic variable-mass mechanical system in general force fields”, Mathematics and Mechanics of Solids, 24:1 (2019), 281  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Theoretical and Applied Mechanics
    Статистика просмотров:
    Страница аннотации:116
    PDF полного текста:35
    Список литературы:30
     
      Обратная связь:
    math-net2025_01@mi-ras.ru
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025