|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
On integrals, Hamiltonian and metriplectic formulations of polynomial systems in 3D
Oğul Esena, Anindya Ghose Choudhuryb, Partha Guhac a Department of Mathematics, Gebze Technical University, Gebze-Kocaeli, Turkey
b Department of Physics, Surendranath College, Calcutta, India
c SN Bose National Centre for Basic Sciences, Salt Lake, Kolkata, India
Аннотация:
The first integrals of the reduced three-wave interaction problem, the Rabinovich system, the Hindmarsh–Rose model, and the Oregonator model are derived using the method of Darboux polynomials.
It is shown that, the reduced three-wave interaction problem, the Rabinovich system, the Hindmarsh–Rose model can be written in a bi-Hamiltonian/Nambu metriplectic form.
Ключевые слова:
Darboux integrability method, the reduced three-wave interaction problem, Rabinovich system, Hindmarsh–Rose model, oregonator model, metriplectic Structure, Nambu-Poisson brackets.
Поступила в редакцию: 18.11.2016 Исправленный вариант: 23.02.2017
Образец цитирования:
Oğul Esen, Anindya Ghose Choudhury, Partha Guha, “On integrals, Hamiltonian and metriplectic formulations of polynomial systems in 3D”, Theor. Appl. Mech., 44:1 (2017), 15–34
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tam18 https://www.mathnet.ru/rus/tam/v44/i1/p15
|
Статистика просмотров: |
Страница аннотации: | 75 | PDF полного текста: | 72 | Список литературы: | 24 |
|