|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
Noether symmetries and integrability in time-dependent Hamiltonian mechanics
Božidar Jovanović Mathematical Institute SANU, Serbian Academy of Sciences and Arts, Belgrade, Serbia
Аннотация:
We consider Noether symmetries within Hamiltonian setting as transformations that preserve Poincaré–Cartan form, i.e., as symmetries of characteristic line bundles of nondegenerate 1-forms.
In the case when the Poincaré–Cartan form is contact, the explicit expression for the symmetries in the inverse Noether theorem is given.
As examples, we consider natural mechanical systems, in particular the Kepler problem.
Finally, we prove a variant of the theorem on complete (non-commutative) integrability in terms of Noether symmetries of time-dependent Hamiltonian systems.
Ключевые слова:
symmetries, the principle of stationary action, Poincaré–Cartan form, contact Hamiltonin vector fields, Noether theorem.
Поступила в редакцию: 21.01.2016 Исправленный вариант: 19.07.2016
Образец цитирования:
Božidar Jovanović, “Noether symmetries and integrability in time-dependent Hamiltonian mechanics”, Theor. Appl. Mech., 43:2 (2016), 255–273
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tam16 https://www.mathnet.ru/rus/tam/v43/i2/p255
|
Статистика просмотров: |
Страница аннотации: | 88 | PDF полного текста: | 39 | Список литературы: | 25 |
|