|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
On the dynamics of systems with one-sided non-integrable constraints
Valery V. Kozlov Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
Аннотация:
In the paper we take the first steps in studying the dynamics of systems with one-sided differential constraints defined by inequalities in the phase space. We give a general definition of motion for systems with such constraints. Within the framework of the classical non-holonomic model, and also for systems with servoconstraints (according to Béghin), we present the conditions under which the system leaves two-sided differential constraints. As an example, we consider the Chaplygin sleigh with a one-sided constraint, which is realized by means of an anisotropic force of viscous friction. Variational principles for the determination of motion of systems with one-sided differential constraints are presented.
Ключевые слова:
non-integrable constraints, servoconstraints, non-holonomic mechanics, vakonomic mechanics, one-sided constraint, unilateral constraint.
Поступила в редакцию: 23.01.2019 Исправленный вариант: 15.05.2019
Образец цитирования:
Valery V. Kozlov, “On the dynamics of systems with one-sided non-integrable constraints”, Theor. Appl. Mech., 46:1 (2019), 1–14
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/tam1 https://www.mathnet.ru/rus/tam/v46/i1/p1
|
Статистика просмотров: |
Страница аннотации: | 260 | PDF полного текста: | 117 | Список литературы: | 40 |
|