|
Математика
An inverse problem of chemical kinetics in a nondegenerate case
L. I. Kononenko Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Аннотация:
The article contains a review of recent results on solving the direct and inverse problems related to a singularly perturbed system of ordinary differential equations which describe a process in chemical kinetics. We also extend the class of problems under study by considering polynomials of arbitrary degree as the right-hand parts of the differential equations in the $\varepsilon \ne 0$. Moreover, an iteration algorithm is proposed of finding an approximate solution to the inverse problem in the nondegenerate $(\varepsilon \ne 0)$ for arbitrary degree. The theorem is proven on the convergence of the algorithm suggested. The proof is based on the contraction mapping principle (the Banach fixed-point theorem).
Ключевые слова:
integral manifold, slow surface, singularly perturbed system, small parameter, inverse problem, ODE.
Поступила в редакцию: 03.02.2023 Принята в печать: 28.02.2023
Образец цитирования:
Л. И. Кононенко, “An inverse problem of chemical kinetics in a nondegenerate case”, Математические заметки СВФУ, 30:1 (2023), 63–71
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/svfu376 https://www.mathnet.ru/rus/svfu/v30/i1/p63
|
Статистика просмотров: |
Страница аннотации: | 26 | PDF полного текста: | 9 |
|