|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Синтез устойчивых линейных фильтров и экстраполяторов Пугачёва для стохастических систем с мультипликативными широкополосными шумами
И. Н. Синицын, Э. Р. Корепанов Институт проблем информатики Федерального исследовательского центра «Информатика и управление» Российской академии наук
Аннотация:
Статья посвящена теории аналитического синтеза непрерывных и дискретных равномерно асимптотически устойчивых условно-оптимальных линейных фильтров и экстраполяторов Пугачёва (ЛФП и ЛЭП) для линейных дифференциальных стохастических систем (СтС) с линейными мультипликативными гауссовскими широкополосными шумами, описывающих состояние и наблюдения. Предполагается, что наблюдение входит как в уравнение состояния, так и в уравнение наблюдения. Доказаны теоремы, лежащие в основе алгоритмов синтеза непрерывных устойчивых ЛФП и ЛЭП. Достаточные условия равномерной асимптотической устойчивости сформулированы в виде требований положительной определенности и равномерной стохастической ограниченности некоторых матриц, отражающих свойства наблюдаемости и управляемости. Изложена теория аналитического синтеза непрерывных равномерно асимптотически устойчивых ЛФП и ЛЭП при автокоррелированном широкополосном шуме в наблюдениях. Рассмотрены алгоритмы синтеза дискретных равномерно асимптотически устойчивых ЛФП и ЛЭП как для дискретных, так и для непрерывных СтС с линейными мультипликативными шумами. Приведен иллюстративный пример. Сформулированы некоторые обобщения.
Ключевые слова:
мультипликативный автокоррелированный широкополосный шум; стохастическая система (СтС); точность и устойчивость ЛФП и ЛЭП; уравнение Риккати; условно-оптимальный линейный фильтр и экстраполятор Пугачёва (ЛФП и ЛЭП).
Поступила в редакцию: 22.09.2014
Образец цитирования:
И. Н. Синицын, Э. Р. Корепанов, “Синтез устойчивых линейных фильтров и экстраполяторов Пугачёва для стохастических систем с мультипликативными широкополосными шумами”, Системы и средства информ., 25:1 (2015), 108–126
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/ssi396 https://www.mathnet.ru/rus/ssi/v25/i1/p108
|
Статистика просмотров: |
Страница аннотации: | 216 | PDF полного текста: | 64 | Список литературы: | 42 |
|