Сибирский математический журнал
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Сиб. матем. журн.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Сибирский математический журнал, 2005, том 46, номер 3, страницы 679–697 (Mi smj997)  

Эта публикация цитируется в 10 научных статьях (всего в 10 статьях)

Теоремы о полунепрерывности и релаксации для интеграндов, удовлетворяющих условию быстрого роста

М. А. Сычев

Институт математики им. С. Л. Соболева СО РАН
Список литературы:
Аннотация: Доказаны теоремы о полунепрерывности и о виде полунепрерывной снизу оболочки интегральных функционалов с интеграндами $L$, имеющими быстрый рост на бесконечности, т.е. когда $c_1G(|Du|)+c_2\leqslant L\leqslant c_3G(|Du|)+c_4$, где $c_3\geqslant c_1>0$, а $G\colon{[0,\infty[}\to{[0,\infty[}$ является выпуклой возрастающей функцией такой, что $vG'(v)/G(v)\to\infty$ при $v\to\infty$ и возрастает при больших $v$. Как и в случае стандартного роста (т.е. когда $G(\cdot)={|\cdot|^p}$), квазивыпуклость интеграндов характеризует полунепрерывность снизу интегральных функционалов, а их квазиовыпукления задают интегральные функционалы, являющиеся полунепрерывными снизу оболочками исходных.
Ключевые слова: меры Янга, полунепрерывность снизу, полунепрерывные снизу оболочки, интегранды с быстрым ростом, квазивыпуклость.
Статья поступила: 11.05.2004
Англоязычная версия:
Siberian Mathematical Journal, 2005, Volume 46, Issue 3, Pages 540–554
DOI: https://doi.org/10.1007/s11202-005-0056-4
Реферативные базы данных:
УДК: 517.972
Образец цитирования: М. А. Сычев, “Теоремы о полунепрерывности и релаксации для интеграндов, удовлетворяющих условию быстрого роста”, Сиб. матем. журн., 46:3 (2005), 679–697; Siberian Math. J., 46:3 (2005), 540–554
Цитирование в формате AMSBIB
\RBibitem{Syc05}
\by М.~А.~Сычев
\paper Теоремы о~полунепрерывности и~релаксации для интеграндов, удовлетворяющих условию быстрого роста
\jour Сиб. матем. журн.
\yr 2005
\vol 46
\issue 3
\pages 679--697
\mathnet{http://mi.mathnet.ru/smj997}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2164570}
\zmath{https://zbmath.org/?q=an:1095.49014}
\elib{https://elibrary.ru/item.asp?id=14593900}
\transl
\jour Siberian Math. J.
\yr 2005
\vol 46
\issue 3
\pages 540--554
\crossref{https://doi.org/10.1007/s11202-005-0056-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000229958200017}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/smj997
  • https://www.mathnet.ru/rus/smj/v46/i3/p679
  • Эта публикация цитируется в следующих 10 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Статистика просмотров:
    Страница аннотации:484
    PDF полного текста:101
    Список литературы:42
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024