|
Сибирский математический журнал, 1987, том 28, номер 4, страницы 44–56
(Mi smj7316)
|
|
|
|
Эта публикация цитируется в 9 научных статьях (всего в 9 статьях)
Субметрии пространственных форм неотрицательной кривизны
В. Н. Берестовский г. Омск
Аннотация:
Вводится понятие субметрии метрических пространств, обобщающее известное понятие римановой субмерсии. Доказаны следующие основные результаты: субметрия полных римановых пространств одинаковой постоянной положительной кривизны является римановым накрытием; субметрия полных локально евклидовых римановых пространств индуцируется римановой субмерсией накрывающих евклидовых пространств, являющейся композицией ортогональной проекции и изометрии.
Отмечается связь римановых субмерсии, имеющих нулевой тензор интегрируемости О'Нейла, с существованием слоений, трансверсальных соответствующим расслоениям. Доказывается, что расслоения Хопфа не имеют трансверсальных $C^1$ слоений.
Библиогр. 5.
Статья поступила: 24.12.1984
Образец цитирования:
В. Н. Берестовский, “Субметрии пространственных форм неотрицательной кривизны”, Сиб. матем. журн., 28:4 (1987), 44–56; Siberian Math. J., 28:4 (1987), 552–562
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/smj7316 https://www.mathnet.ru/rus/smj/v28/i4/p44
|
|