|
Сибирский математический журнал, 1985, том 26, номер 6, страницы 15–23
(Mi smj7066)
|
|
|
|
О проблеме сокращения для компактных комплексных многообразий
Д. Н. Ахиезер г. Москва
Аннотация:
Пусть $V$ – связанное компактное комплексное многообразие, $B(V)$ – борелевская подгруппа в группе его автоморфизмов. Многообразие $V$ называется $B$-многообразием, если для каждого $B(V)$-инвариантного замкнутого аналитического подмножества $A\subset V$ множество точек $a\in A$, неподвижных относительно $B(V)$, непусто и конечно. Доказано, что из изоморфизма $X\times V\approx Y\times V$, где $X$ и $Y$ – произвольные связанные компактные комплексы многообразия, а $V$ – $B$-многообразие, следует изоморфизм $X\approx Y$.
Библиогр. 14.
Статья поступила: 24.06.1983
Образец цитирования:
Д. Н. Ахиезер, “О проблеме сокращения для компактных комплексных многообразий”, Сиб. матем. журн., 26:6 (1985), 15–23; Siberian Math. J., 26:6 (1985), 792–798
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/smj7066 https://www.mathnet.ru/rus/smj/v26/i6/p15
|
|