Сибирский математический журнал
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Сиб. матем. журн.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Сибирский математический журнал, 1997, том 38, номер 3, страницы 657–675 (Mi smj390)  

Эта публикация цитируется в 109 научных статьях (всего в 110 статьях)

Соболевские классы функций со значениями в метрическом пространстве

Ю. Г. Решетняк
Аннотация: Кореваар и Шоэн определили некоторый аналог соболевского пространства $W^1_p(\Omega)$ для функций, заданных в области $\Omega$ риманова пространства и принимающих значения в произвольном полном метрическом пространстве. В настоящей статье предлагается другой подход к определению таких пространств. Рассматривается случай, когда $\Omega$ есть область в $\mathbb{R}^n$ и отображения действуют из $\Omega$ в метрическое пространство $X$. Предполагается, что $X$ полно и сепарабельно. В некоторых случаях дополнительно требуется, чтобы пространство удовлетворяло тому условию, что всякий замкнутый шар в нем компактен.
Пусть $\Omega$ – область в $\mathbb{R}^n$, $X$ – полное метрическое пространство, $d$ – метрика пространства $X$. Класс $W_p^1(\Omega,X)$ определяется здесь как совокупность всех отображений $f$ области $\Omega$ в $X$, удовлетворяющих следующему условию. Для всякой точки $z\in X$ вещественная функция $f_x$, определенная равенством $f_z(t)=d[f(t),z]$, принадлежит классу $W_p^1(\Omega)$, причем существует вещественная функция $w$ класса $L_p(\Omega)$, не зависящая от выбора точки $z\in X$ и такая, что $|\bigtriangledown f_z(x)|\leqslant w(x)$ для почти всех $x\in\Omega$.
Для отображений класса $W_p^1(\Omega,X)$ определяется понятие $L_p^1$-нормы. Устанавливается некоторая общая теорема о полунепрерывности $L_p^1$-нормы и доказывается полнота $W^1_p(\Omega,X)$ при надлежащем определении метрики в нем. Устанавливаются теоремы, аналогичные известным теоремам вложения Соболева. Локазывается, что если функция $f\colon\Omega\to X$ принадлежит классу $W^1_p(\Omega,X)$, то для всякой функции $\varphi\colon X\to\mathbb{R}$ такой, что $|\varphi(x_1)-\varphi(x_2)|\leqslant Kd(x_1,x)2)$ для любых $x_1,x_2\in X$, где $K<\infty$ – постоянная, суперпозиция $\varphi\circ f$ принадлежит классу $W^1_p(\Omega,\mathbb{R})$, причем $|\bigtriangledown\varphi\circ f(t)|\leqslant Kw(t)$ для почти всех $t\in\Omega$. Здесь $w$ – функция, указанная в данном выше определении.
Аналогичный подход ранее был применен Амбросио для определения класса $BV(\Omega)$ функций ограниченной вариации со значениями в локально компактном метрическом пространстве $X$.
Библиогр. 16.
Статья поступила: 24.09.1996
Англоязычная версия:
Siberian Mathematical Journal, 1997, Volume 38, Issue 3, Pages 567–583
DOI: https://doi.org/10.1007/BF02683844
Реферативные базы данных:
УДК: 517.5
Образец цитирования: Ю. Г. Решетняк, “Соболевские классы функций со значениями в метрическом пространстве”, Сиб. матем. журн., 38:3 (1997), 657–675; Siberian Math. J., 38:3 (1997), 567–583
Цитирование в формате AMSBIB
\RBibitem{Res97}
\by Ю.~Г.~Решетняк
\paper Соболевские классы функций со значениями в~метрическом пространстве
\jour Сиб. матем. журн.
\yr 1997
\vol 38
\issue 3
\pages 657--675
\mathnet{http://mi.mathnet.ru/smj390}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1457485}
\zmath{https://zbmath.org/?q=an:0944.46024}
\transl
\jour Siberian Math. J.
\yr 1997
\vol 38
\issue 3
\pages 567--583
\crossref{https://doi.org/10.1007/BF02683844}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XN76300015}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/smj390
  • https://www.mathnet.ru/rus/smj/v38/i3/p657
    Цикл статей
    Эта публикация цитируется в следующих 110 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Статистика просмотров:
    Страница аннотации:952
    PDF полного текста:340
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024