|
Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)
Высота граней $3$-многогранников
О. В. Бородинa, А. О. Ивановаb a Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090
b Северо-Восточный федеральный университет им. М. К. Аммосова, ул. Кулаковского, 48, Якутск 677000
Аннотация:
Высота грани в $3$-многограннике есть максимальная степень инцидентных ей вершин, а высота $h$ $3$-многогранника есть минимум высот его граней. Грань называется пирамидальной, если она является либо $4$-гранью, инцидентной трем $3$-вершинам, либо $3$-гранью, инцидентной двум вершинам степени не больше $4$. При наличии пирамидальных граней $h$ может быть сколь угодно большой, поэтому далее предполагается, что пирамидальных граней нет.
В 1940 г. Лебег доказал, что $h\le11$ в каждом четыреангулированном $3$-многограннике. В 1995 г. эта оценка была улучшена С. В. Августиновичем и О. В. Бородиным до $10$. Недавно эта оценка улучшена нами до точной оценки $8$.
Для плоских триангуляций без $4$-вершин О. В. Бородин (1992 г.), подтвердив гипотезу Коцига (1979 г.), доказал, что $h\le20$, причем оценка неулучшаема; далее для всех триангулированных $3$-многогранников он (1998 г.) доказал, что $h\le20$. Для многогранников без треугольников нами недавно получена точная оценка $10$.
Для произвольных многогранников Хорняк и Йендроль (1996 г.) доказали, что $h\le23$. В настоящей статье эта оценка улучшена до точной оценки $20$.
Ключевые слова:
плоская карта, планарный граф, 3-многогранник, структурные свойства, высота грани.
Статья поступила: 01.04.2015
Образец цитирования:
О. В. Бородин, А. О. Иванова, “Высота граней $3$-многогранников”, Сиб. матем. журн., 58:1 (2017), 48–55; Siberian Math. J., 58:1 (2017), 37–42
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/smj2838 https://www.mathnet.ru/rus/smj/v58/i1/p48
|
Статистика просмотров: |
Страница аннотации: | 264 | PDF полного текста: | 43 | Список литературы: | 48 | Первая страница: | 4 |
|