Сибирский математический журнал
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Сиб. матем. журн.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Сибирский математический журнал, 2016, том 57, номер 6, страницы 1197–1207
DOI: https://doi.org/10.17377/smzh.2016.57.601
(Mi smj2817)
 

Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)

Основы теории многообразий нильпотентных $\mathrm{MR}$-групп

М. Г. Амаглобелиa, В. Н. Ремесленниковbc

a Тбилисский гос. университет им. Ив. Джавахишвили, пр. Чавчавадзе, 1, Тбилиси 0128, Грузия
b Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090
c Омский гос. технический университет, пр. Мира, 11, Омск 644050
Список литературы:
Аннотация: Понятие степенной $\mathrm R$-группы, где $\mathrm R$ – произвольное ассоциативное кольцо с единицей, введено Р. Линдоном. А. Г. Мясников и В. Н. Ремесленников уточнили понятие $\mathrm R$-группы, введя дополнительную аксиому. В частности, новое понятие степенной MR-группы является непосредственным обобщением понятия $\mathrm R$-модуля на случай некоммутативных групп. В данной статье изложены основы теории многообразий нильпотентных $\mathrm{MR}$-групп и проведено сравнение различных определений нильпотентности в этой категории.
Ключевые слова: линдонова $\mathrm R$-группа, холлова $\mathrm R$-группа, $\mathrm{MR}$-группа, многообразие $\mathrm{MR}$-групп, $\alpha$-коммутатор, тензорное пополнение, нильпотентная $\mathrm{MR}$-группа.
Финансовая поддержка Номер гранта
Российский фонд фундаментальных исследований 14-01-00068
Российский научный фонд 14-11-00085
Результаты § 3 и 4 получены при финансовой поддержке гранта РФФИ (код проекта 14-01-00068). Остальные результаты работы получены при финансовой поддержке гранта РНФ (проект № 14-11-00085).
Статья поступила: 05.04.2016
Англоязычная версия:
Siberian Mathematical Journal, 2016, Volume 57, Issue 6, Pages 935–942
DOI: https://doi.org/10.1134/S003744661606001X
Реферативные базы данных:
Тип публикации: Статья
УДК: 512.544.33
Образец цитирования: М. Г. Амаглобели, В. Н. Ремесленников, “Основы теории многообразий нильпотентных $\mathrm{MR}$-групп”, Сиб. матем. журн., 57:6 (2016), 1197–1207; Siberian Math. J., 57:6 (2016), 935–942
Цитирование в формате AMSBIB
\RBibitem{AmaRem16}
\by М.~Г.~Амаглобели, В.~Н.~Ремесленников
\paper Основы теории многообразий нильпотентных $\mathrm{MR}$-групп
\jour Сиб. матем. журн.
\yr 2016
\vol 57
\issue 6
\pages 1197--1207
\mathnet{http://mi.mathnet.ru/smj2817}
\crossref{https://doi.org/10.17377/smzh.2016.57.601}
\elib{https://elibrary.ru/item.asp?id=27380112}
\transl
\jour Siberian Math. J.
\yr 2016
\vol 57
\issue 6
\pages 935--942
\crossref{https://doi.org/10.1134/S003744661606001X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391768100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85007071248}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/smj2817
  • https://www.mathnet.ru/rus/smj/v57/i6/p1197
  • Эта публикация цитируется в следующих 4 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Статистика просмотров:
    Страница аннотации:396
    PDF полного текста:104
    Список литературы:72
    Первая страница:5
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024