|
Эта публикация цитируется в 12 научных статьях (всего в 12 статьях)
Принципы больших уклонений в граничных задачах для обобщенных процессов восстановления
А. А. Боровковab a Новосибирский гос. университет, ул. Пирогова, 2, Новосибирск 630090
b Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090
Аннотация:
Найдена в явном виде логарифмическая асимптотика вероятностей событий, связанных с пересечением (или не пересечением) произвольных удаленных границ траекторией обобщенного процесса восстановления.
Ключевые слова:
обобщенный процесс восстановления, принцип больших уклонений, граничные задачи, вторая функция уклонений, допустимая неоднородность, функционал уклонений, регулярные уклонения, кратчайшая траектория, первая граничная задача, линии уровня, вторая граничная задача.
Статья поступила: 22.01.2015
Образец цитирования:
А. А. Боровков, “Принципы больших уклонений в граничных задачах для обобщенных процессов восстановления”, Сиб. матем. журн., 57:3 (2016), 562–595; Siberian Math. J., 57:3 (2016), 442–469
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/smj2764 https://www.mathnet.ru/rus/smj/v57/i3/p562
|
Статистика просмотров: |
Страница аннотации: | 297 | PDF полного текста: | 73 | Список литературы: | 53 | Первая страница: | 9 |
|