Сибирский математический журнал
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Сиб. матем. журн.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Сибирский математический журнал, 2014, том 55, номер 1, страницы 17–24 (Mi smj2509)  

Эта публикация цитируется в 4 научных статьях (всего в 4 статьях)

Комбинаторное строение граней в триангулированных $3$-многогранниках с минимальной степенью $4$

О. В. Бородинab, А. О. Ивановаc

a Новосибирский гос. университет, ул. Пирогова, 2, Новосибирск 630090
b Институт математики им. С. Л. Соболева СО РАН, пр. Академика Коптюга, 4, Новосибирск 630090
c Северо-Восточный федеральный университет им. М. К. Аммосова, ул. Кулаковского, 48, Якутск 677891, Республика Саха (Якутия)
Список литературы:
Аннотация: В 1940 г. Лебег доказал, что каждый $3$-многогранник с минимальной степенью не менее $4$ содержит $3$-грань, набор степеней вершин которой мажорируется одной из следующих последовательностей: $(4,4,\infty)$, $(4,5,19)$, $(4,6,11)$, $(4,7,9)$, $(5,5,9)$, $(5,6,7)$. Это описание было усилено Бородиным (2002) следующим образом: $(4,4,\infty)$, $(4,5,17)$, $(4,6,11)$, $(4,7,8)$, $(5,5,8)$, $(5,6,6)$.
Для триангуляций с минимальной степенью не менее $4$ Йендроль (1999) дал такое описание граней: $(4,4,\infty)$, $(4,5,13)$, $(4,6,17)$, $(4,7,8)$, $(5,5,7)$, $(5,6,6)$.
Мы даем следующее описание граней в плоских триангуляциях (в частности, для триангулированных $3$-многогранников) с минимальной степенью не менее $4$, в котором все параметры неулучшаемы и достигаются независимо от других: $(4,4,\infty)$, $(4,5,11)$, $(4,6,10)$, $(4,7,7)$, $(5,5,7)$, $(5,6,6)$.
Попутно опровергается гипотеза Йендроля (1999) о комбинаторном строении граней в триангулированных $3$-многогранниках.
Ключевые слова: плоская карта, плоский граф, $3$-многогранник, структурные свойства, вес.
Статья поступила: 30.04.2013
Англоязычная версия:
Siberian Mathematical Journal, 2014, Volume 55, Issue 1, Pages 12–18
DOI: https://doi.org/10.1134/S0037446614010030
Реферативные базы данных:
Тип публикации: Статья
УДК: 519.17
Образец цитирования: О. В. Бородин, А. О. Иванова, “Комбинаторное строение граней в триангулированных $3$-многогранниках с минимальной степенью $4$”, Сиб. матем. журн., 55:1 (2014), 17–24; Siberian Math. J., 55:1 (2014), 12–18
Цитирование в формате AMSBIB
\RBibitem{BorIva14}
\by О.~В.~Бородин, А.~О.~Иванова
\paper Комбинаторное строение граней в~триангулированных $3$-многогранниках с~минимальной степенью~$4$
\jour Сиб. матем. журн.
\yr 2014
\vol 55
\issue 1
\pages 17--24
\mathnet{http://mi.mathnet.ru/smj2509}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3220582}
\transl
\jour Siberian Math. J.
\yr 2014
\vol 55
\issue 1
\pages 12--18
\crossref{https://doi.org/10.1134/S0037446614010030}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000332453900003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84894803885}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/smj2509
  • https://www.mathnet.ru/rus/smj/v55/i1/p17
  • Эта публикация цитируется в следующих 4 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Статистика просмотров:
    Страница аннотации:261
    PDF полного текста:52
    Список литературы:57
    Первая страница:16
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024