Сибирский математический журнал
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Сиб. матем. журн.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Сибирский математический журнал, 1993, том 34, номер 1, страницы 145–156 (Mi smj1704)  

О существовании глобального решения начально-краевой задачи для уравнения Больцмана

А. Сакабеков
Аннотация: Для начально-краевой задачи
\begin{gather*} \frac{\partial f}{\partial t}+\biggl(v,\frac{\partial f}{\partial x}\biggr)=I(f,f), \quad (t,x,v)\in(0,T]\times G\times R_3^v, \\ f(t,x,v)|_{t=0}=f^0(x,v), \quad (x,v)\in G\times R_3^v, \\ f(t,x_{\partial G},v)=g(t,x_{\partial G},v), \quad (v,n_{\partial G})<0, \end{gather*}
доказано существование глобального решения, принадлежащего пространству $C([0,T]$; $L^1(G\times R_3^v))$ $\forall\,T<\infty$ при условии, что
\begin{gather*} f^0\in L^1\bigl(G\times\mathbf{R}_3^v\bigr), \quad f^0\ge0, \\ \int_{G\times\mathbf{R}_3^v}f^0(1+|v|^2+|{\ln f^0}|)\,dx\,dv<\infty, \quad |v|g\in C\bigl([0,T];\,L^1\bigl(\partial G\times\mathbf{R}_3^-\bigr)\bigr), \quad g\ge0, \\ \sup_{t\in[0,T]}\int_{\partial G\times\mathbf{R}_3^-}|v|g(1+|v|^2+|{\ln g}|)\,dx\,dv<\infty, \quad B\in L^1\bigl(S_2\times\mathbf{R}_3^v\bigr), \quad B\ge0, \end{gather*}
где $G$ – ограниченная выпуклая область из $\mathbf{R}_3^x $ с границей $\partial G$; $B$ – ядро столкновения; $S_2$ – поверхность единичной сферы, $\mathbf{R}_3^-=\bigl\{v\in\mathbf{R}_3^v:(v,n_{\partial G})<0\bigr\}$.
Библиогр. 16.
Статья поступила: 10.10.1991
Англоязычная версия:
Siberian Mathematical Journal, 1993, Volume 34, Issue 1, Pages 128–138
DOI: https://doi.org/10.1007/BF00971249
Реферативные базы данных:
УДК: 517.958
Образец цитирования: А. Сакабеков, “О существовании глобального решения начально-краевой задачи для уравнения Больцмана”, Сиб. матем. журн., 34:1 (1993), 145–156; Siberian Math. J., 34:1 (1993), 128–138
Цитирование в формате AMSBIB
\RBibitem{Sak93}
\by А.~Сакабеков
\paper О~существовании глобального решения начально-краевой задачи для уравнения Больцмана
\jour Сиб. матем. журн.
\yr 1993
\vol 34
\issue 1
\pages 145--156
\mathnet{http://mi.mathnet.ru/smj1704}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1216844}
\zmath{https://zbmath.org/?q=an:0842.35124}
\transl
\jour Siberian Math. J.
\yr 1993
\vol 34
\issue 1
\pages 128--138
\crossref{https://doi.org/10.1007/BF00971249}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993KZ84700015}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/smj1704
  • https://www.mathnet.ru/rus/smj/v34/i1/p145
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Статистика просмотров:
    Страница аннотации:191
    PDF полного текста:86
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024