Аннотация:
Рассматриваются фреймы Габора, порожденные функцией Гаусса. С помощью констант неопределенности оценивается локализация функций двойственных фреймов в зависимости от соотношения параметров частотно-временного окна и степени переполненности. Общий вывод таков: при увеличении диспропорции окна локализация быстро ухудшается. С другой стороны, чем более переопределена исходная система функций, тем лучше локализованы функции двойственного фрейма. Для жесткого фрейма локализация при одном и том же наборе параметров существенно лучше, чем для двойственного фрейма. Рассматриваемая задача тесно связана с задачей интерполяции по равномерным сдвигам функции Гаусса. Построение узловой функции при интерполяции и функции окна двойственного фрейма осуществляется с помощью одних и тех же коэффициентов. Эти коэффициенты играют важную роль и при выводе формул для констант неопределенности. Поэтому в работе изучаются их свойства, связанные со знакочередуемостью и монотонностью убывания по модулю.
Библиография: 38 названий.
Образец цитирования:
Е. А. Киселев, Л. А. Минин, И. Я. Новиков, С. Н. Ушаков, “Локализация оконных функций двойственных и жестких фреймов Габора, порожденных функцией Гаусса”, Матем. сб., 215:3 (2024), 80–99; E. A. Kiselev, L. A. Minin, I. Ya. Novikov, S. N. Ushakov, “Localization of the window functions of dual and tight Gabor frames generated by the Gaussian function”, Sb. Math., 215:3 (2024), 364–382