Аннотация:
Рассматривается оптимальная транспортировка мер на метрических и топологических пространствах в случае, когда функция стоимости и маргинальные распределения зависят от параметра со значениями в метрическом пространстве. Расстояние Хаусдорфа между множествами вероятностных мер с заданными проекциями оценивается через расстояния между самими проекциями. Эта оценка используется для доказательства непрерывности стоимости оптимальной транспортировки относительно параметра в случае непрерывной зависимости функции стоимости и маргинальных распределений от этого параметра. Установлено существование приближенных оптимальных планов, непрерывных относительно параметра. Показано, что оптимальный план непрерывен по параметру в случае единственности. Однако построены примеры, когда не существует непрерывного выбора оптимальных планов. Другое применение оценки для расстояния Хаусдорфа связано с дискретными приближениями транспортных задач. Наконец, доказан общий результат о сходимости оптимальных отображений Монжа.
Библиография: 46 названий.
Ключевые слова:задача Канторовича, задача Монжа, расстояние Хаусдорфа, каплинг, слабая сходимость, непрерывность по параметру.
Образец цитирования:
В. И. Богачев, С. Н. Попова, “Расстояния Хаусдорфа между каплингами и оптимальная транспортировка с параметром”, Матем. сб., 215:1 (2024), 33–58; V. I. Bogachev, S. N. Popova, “Hausdorff distances between couplings and optimal transportation”, Sb. Math., 215:1 (2024), 28–51