Аннотация:
Для систем уравнений с бесконечным числом корней иногда удается получить теоремы типа Кушниренко–Бернштейна–Хованского, заменяя вычисление числа корней на вычисление их асимптотической плотности. Мы рассматриваем системы целых функций экспоненциального роста в пространстве $\mathbb C^n$ и вычисляем асимптотику усредненного распределения корней в терминах геометрии выпуклых тел, расположенных в комплексном векторном пространстве.
Библиография: 11 названий.
Образец цитирования:
Б. Я. Казарновский, “Распределение нулей функций экспоненциального роста”, Матем. сб., 215:3 (2024), 70–79; B. Ya. Kazarnovskii, “Distribution of zeros of functions with exponential growth”, Sb. Math., 215:3 (2024), 355–363