Аннотация:
Работа посвящена исследованию голоморфных векторных расслоений с логарифмическими связностями на компактной римановой поверхности и применению полученных результатов к исследованию вопроса положительной разрешимости проблемы Римана–Гильберта на римановой поверхности. Мы приводим пример представления фундаментальной группы римановой поверхности с четырьмя выколотыми точками, который не может быть реализован как представление монодромии логарифмической связности с четырьмя особыми точками ни в каком полустабильном расслоении. Для произвольной пары – расслоение и логарифмическая связность в нем – мы доказываем оценку на наклоны присоединенных факторов фильтрации Хардера–Нарасимхана. Кроме этого, мы представляем некоторые результаты о реализуемости представления в качестве прямого слагаемого в представлении монодромии логарифмической связности в полустабильном расслоении нулевой степени.
Библиография: 9 названий.
Ключевые слова:монодромия, риманова поверхность, проблема Римана–Гильберта, полустабильное расслоение, логарифмическая связность.
Образец цитирования:
И. В. Вьюгин, Л. А. Дудникова, “Стабильные расслоения и проблема Римана–Гильберта на римановой поверхности”, Матем. сб., 215:2 (2024), 3–20; I. V. Vyugin, L. A. Dudnikova, “Stable vector bundles and the Riemann–Hilbert problem on a Riemann surface”, Sb. Math., 215:2 (2024), 141–156