|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
О сходимости формальных рядов Дюлака, удовлетворяющих алгебраическому ОДУ
Р. Р. Гонцовab, И. В. Горючкинаc a Институт проблем передачи информации им. А. А. Харкевича Российской академии наук, г. Москва
b Национальный исследовательский университет «МЭИ», г. Москва
c Институт прикладной математики им. М. В. Келдыша Российской академии наук, г. Москва
Аннотация:
Предлагается достаточное условие сходимости ряда Дюлака, формально удовлетворяющего алгебраическому обыкновенному дифференциальному уравнению (ОДУ). Такие формальные решения алгебраических ОДУ встречаются довольно часто, в частности, уравнения Пенлеве III, V и VI обладают формальными решениями в виде рядов Дюлака и их сходимость следует из
предлагаемого достаточного условия.
Библиография: 13 названий.
Ключевые слова:
алгебраическое ОДУ, формальное решение, ряд Дюлака, сходимость.
Поступила в редакцию: 09.01.2018 и 28.01.2019
Образец цитирования:
Р. Р. Гонцов, И. В. Горючкина, “О сходимости формальных рядов Дюлака, удовлетворяющих алгебраическому ОДУ”, Матем. сб., 210:9 (2019), 3–18; R. R. Gontsov, I. V. Goryuchkina, “Convergence of formal Dulac series satisfying an algebraic ordinary differential equation”, Sb. Math., 210:9 (2019), 1207–1221
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sm9064https://doi.org/10.4213/sm9064 https://www.mathnet.ru/rus/sm/v210/i9/p3
|
Статистика просмотров: |
Страница аннотации: | 485 | PDF русской версии: | 52 | PDF английской версии: | 5 | Список литературы: | 39 | Первая страница: | 16 |
|