|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
О спектральных свойствах некоторых нелинейных операторов типа Штурма–Лиувилля
Д. В. Валовик Пензенский государственный университет
Аннотация:
Для некоторых квазилинейных обыкновенных дифференциальных уравненийвторого порядка изучена задача на собственные значения типа Штурма–Лиувилля на отрезке с условиями первого рода. Для определения дискретных собственных значений используется дополнительное (локальное) условие на одной из границ отрезка. Задача (эквивалентно) сведена к трансцендентному уравнению относительно спектрального параметра. Анализ этого уравнения позволяет доказать существование бесконечного числа (изолированных) собственных значений, указать их асимптотику, найти условия, при которых собственные функции являются периодическими, вычислить период и указать явную формулу для нулей собственной функции. Получено несколько теорем сравнения. Также изучена задача, к которой не применима теория возмущений.
Библиография: 27 названий.
Ключевые слова:
нелинейная задача типа Штурма–Лиувилля, нелинейное дифференциальное уравнение, асимптотика собственных значений, теорема сравнения.
Поступила в редакцию: 03.02.2016 и 14.03.2017
Образец цитирования:
Д. В. Валовик, “О спектральных свойствах некоторых нелинейных операторов типа Штурма–Лиувилля”, Матем. сб., 208:9 (2017), 26–41; D. V. Valovik, “The spectral properties of some nonlinear operators of Sturm-Liouville type”, Sb. Math., 208:9 (2017), 1282–1297
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sm8666https://doi.org/10.4213/sm8666 https://www.mathnet.ru/rus/sm/v208/i9/p26
|
Статистика просмотров: |
Страница аннотации: | 1297 | PDF русской версии: | 53 | PDF английской версии: | 16 | Список литературы: | 71 | Первая страница: | 43 |
|