|
Граничные теоремы единственности для функций с нулевыми интегралами по гиперболическим кругам
О. А. Очаковская Институт прикладной математики и механики НАН Украины, г. Донецк
Аннотация:
Получены точные условия, описывающие допустимую скорость убывания ненулевой функции, имеющей нулевые интегралы по всем гиперболическим кругам фиксированного радиуса. Впервые изучен случай, когда граничное поведение функции рассматривается вблизи единственной точки на границе области задания.
Библиография: 17 названий.
Ключевые слова:
граничные теоремы единственности, гиперболическое пространство, преобразования Мёбиуса.
Поступила в редакцию: 06.02.2012 и 12.10.2012
Образец цитирования:
О. А. Очаковская, “Граничные теоремы единственности для функций с нулевыми интегралами по гиперболическим кругам”, Матем. сб., 204:2 (2013), 117–132; O. A. Ochakovskaya, “Boundary uniqueness theorems for functions whose integrals over hyperbolic discs vanish”, Sb. Math., 204:2 (2013), 264–279
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sm8110https://doi.org/10.4213/sm8110 https://www.mathnet.ru/rus/sm/v204/i2/p117
|
Статистика просмотров: |
Страница аннотации: | 358 | PDF русской версии: | 161 | PDF английской версии: | 10 | Список литературы: | 68 | Первая страница: | 25 |
|