|
Эта публикация цитируется в 5 научных статьях (всего в 6 статьях)
Асимптотика определителей Адамара и сходимость строк аппроксимаций Паде для суммы экспонент
А. И. Аптекарев
Аннотация:
Исследована асимптотика определителей Адамара $\Delta_{n,m}$ (размера $m\times m$) при произвольном фиксированном $m$ и $n\to\infty$ для функции $f(z)=\sum^k_{t=1}e^{\lambda_tz}$, где $\{\lambda_t\}^k_{t=1}$ – несовпадающие комплексные числа единичного модуля. Справедлива теорема о сходимости в топологии $H(\mathbf C)$ $s\cdot p$-й строки таблицы Паде для функции $f(z)=\sum^k_{t=1}e^{\lambda_tz}$ ($\{\lambda_t\}^k_{t=1}$ – произвольные несовпадающие комплексные числа) при произвольном натуральном $p$ и $s$, равном числе чисел $\lambda_t$ с максимальным среди $\{\lambda_t\}^k_{t=1}$ модулем.
Библиография: 8 названий.
Поступила в редакцию: 21.12.1979
Образец цитирования:
А. И. Аптекарев, “Асимптотика определителей Адамара и сходимость строк аппроксимаций Паде для суммы экспонент”, Матем. сб., 113(155):4(12) (1980), 520–537; A. I. Aptekarev, “Asymptotics of Hadamard determinants and the convergence of rows of Padé approximants for sums of exponentials”, Math. USSR-Sb., 41:4 (1982), 427–441
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sm2816 https://www.mathnet.ru/rus/sm/v155/i4/p520
|
|