Аннотация:
Пусть $\{S_{n},\,n\geqslant 0\}$ – случайное блуждание, распределение шага которого принадлежит без центрировки области притяжения устойчивого распределения индекса $\alpha $, т.е. существует такая нормирующая последовательность констант $a_{n}$, что последовательность $S_{n}/a_{n}$, $n=1,2,\dots$, слабо сходится при $n\to \infty $ к случайной величине, имеющей устойчивое распределение индекса $\alpha $. Пусть $S_{0}=0$,
$$
L_{n}:=\min (S_{1},\dots,S_{n}),\qquad\tau _{n}:=\min \{ 0\leqslant k\leqslant n\colon S_{k}=\min (0,L_{n})\} .
$$
В предположении, что $S_{n}\leqslant h(n)$, где функция $h(n)$ имеет порядок $o(a_{n})$ при $n\to\infty$ и $\lim_{n\to \infty }h(n)\in [ -\infty,+\infty ]$ существует, доказан ряд предельных теорем, описывающих асимптотическое поведение функционалов вида
$$
\mathbf{E}[ e^{\lambda S_{\tau _{n}}};\, S_{n}\leqslant h(n)], \qquad \lambda>0,
$$
при $n\to \infty $. Полученные результаты используются при исследовании вероятности невырождения критического ветвящегося процесса, эволюционирующего в экстремально неблагоприятной среде.
Библиография: 15 названий.
Ministry of Science and Technology (MOST) of China
G20221740071
Исследование В. А. Ватутина выполнено в МЦМУ МИАН при финансовой поддержке Минобрнауки России (соглашение № 075-15-2022-265), а также Ministry of Science and Technology
of the People's Republic of China (грант № G20221740071). Исследование К. Донга выполнено
при поддержке Ministry of Science and Technology of the People's Republic of China (грант
№ G20221740071). Исследование Е. Е. Дьяконовой выполнено в МЦМУ МИАН при финансовой поддержке Минобрнауки России (соглашение № 075-15-2022-265).
Образец цитирования:
В. А. Ватутин, К. Донг, Е. Е. Дьяконова, “Некоторые функционалы для случайных блужданий и критические ветвящиеся процессы в экстремально неблагоприятной среде”, Матем. сб., 215:10 (2024), 58–88