Аннотация:
Исследуются аппроксимации на отрезке $[-1,1]$ сингулярных интегралов вида
$$
\widehat{f}(x)=\int_{-1}^{1}\frac{f(t)}{t-x}\sqrt{1-t^2}\,dt, \qquad x \in [-1,1],
$$
двумя рациональными интегральными операторами, в некотором смысле связанными между собой. Первый из них – интегральный оператор Фурье–Чебышёва, ассоциированный с системой рациональных функций Чебышёва–Маркова. Второй оператор является его образом при преобразовании изучаемым сингулярным интегралом.
Изучаются аппроксимационные свойства соответствующих полиномиальных аналогов обоих операторов в случае, когда плотность сингулярного интеграла удовлетворяет на отрезке $[-1,1]$ условию Липшица порядка $\alpha \in (0,1]$.
Исследуются рациональные аппроксимации на отрезке $[-1,1]$ сингулярного интеграла с плотностью, имеющей степенную особенность. Рассматривается случай, когда аппроксимирующие рациональные функции имеют произвольное фиксированное количество геометрически различных полюсов, и случай, когда параметры аппроксимирующих рациональных функций представляют собой некоторые модификации “ньюменовских” параметров.
Библиография: 34 названия.
Ключевые слова:сингулярные интегралы на отрезке, рациональные интегральные операторы Фурье–Чебышёва, равномерные оценки, метод Лапласа, сильная асимптотика.
Образец цитирования:
П. Г. Поцейко, Е. А. Ровба, “О приближениях одного сингулярного интеграла на отрезке рациональными интегральными операторами Фурье–Чебышёва”, Матем. сб., 215:7 (2024), 96–137; P. G. Potseiko, E. A. Rovba, “Approximations of one singular integral on an interval by Fourier–Chebyshev rational integral operators”, Sb. Math., 215:7 (2024), 953–992