Аннотация:
В 1987 г. У. Брем и В. Кюнель показали, что всякая триангуляция $d$-мерного многообразия (без края), не гомеоморфного сфере, имеет не меньше $3d/2+3$ вершин. Более того, триангуляции ровно с $3d/2+3$ вершинами могут существовать только для “многообразий, похожих на проективные плоскости”, которые бывают только в размерностях $2$, $4$, $8$ и $16$. Имеются $6$-вершинная триангуляция вещественной проективной плоскости $\mathbb{RP}^2$, $9$-вершинная триангуляция комплексной проективной плоскости $\mathbb{CP}^2$ и $15$-вершинные триангуляции кватернионной проективной плоскости $\mathbb{HP}^2$.
Недавно автор построил первые примеры $27$-вершинных триангуляций многообразий, похожих на октавную проективную плоскость $\mathbb{OP}^2$. Четыре наиболее симметричные из них имеют группу симметрий $\mathrm{C}_3^3\rtimes \mathrm{C}_{13}$ порядка $351$. Эти триангуляции были найдены при помощи компьютерной программы после того, как была угадана их группа симметрий. Тем не менее оставалось совершенно непонятным, почему именно эта группа реализуется как группа симметрий и существуют ли $27$-вершинные триангуляции многообразий, похожих на $\mathbb{OP}^2$, с другими (возможно, большими) группами симметрий. В настоящей работе даются сильные ограничения на группы симметрий таких $27$-вершинных триангуляций. А именно, приводится список из $26$ подгрупп симметрической группы $\mathrm{S}_{27}$, содержащий все возможные группы симметрий $27$-вершинных триангуляций многообразий, похожих на октавную проективную плоскость. (Нам не известно, все ли эти подгруппы реализуются как группы симметрий.) Группа $\mathrm{C}_3^3\rtimes \mathrm{C}_{13}$ является самой большой в этом списке, причем порядки всех остальных групп не превосходят $52$. Ключевую роль в нашем подходе играет использование результатов П. Смита и Г. Бредона о топологии множеств неподвижных точек конечных групп преобразований.
Библиография: 36 названий.
Ключевые слова:минимальная триангуляция, октавная проективная плоскость, триангуляция Кюнеля, теория Смита, группа симметрий.
Образец цитирования:
А. А. Гайфуллин, “О возможных группах симметрий 27-вершинных триангуляций многообразий, похожих на октавную проективную плоскость”, Матем. сб., 215:7 (2024), 3–51; A. A. Gaifullin, “On possible symmetry groups of 27-vertex triangulations of manifolds like the octonionic projective plane”, Sb. Math., 215:7 (2024), 869–910