|
О блоке фильтров в сплайн-вейвлетном преобразовании на неравномерной сетке
А. А. Макаровa, С. В. Макароваb a Санкт-Петербургский государственный университет, Университетская набережная, 7/9, Санкт-Петербург, 199034
b Санкт-Петербургский государственный университет аэрокосмического приборостроения, ул. Большая Морская, 67,
Санкт-Петербург, 199034
Аннотация:
В работе получено явное представление блока фильтров для построения вейвлетных преобразований пространств линейных минимальных сплайнов на неравномерных сетках на отрезке. Построены операторы декомпозиции и реконструкции, доказана их взаимная обратность. Найдены соотношения, связывающие соответствующие фильтры. Установлен факт разреженности матриц декомпозиции и реконструкции. Применяемый в работе подход к построению сплайн-вейвлетных разложений использует аппроксимационные соотношения в качестве исходной структуры для построения пространств минимальных сплайнов и калибровочные соотношения для доказательства вложенности соответствующих пространств. Преимуществами предлагаемого подхода, за счет отказа от формализма гильбертовых пространств, являются возможность применения неравномерных сеток и достаточно произвольных неполиномиальных сплайн-вeйвлетов.
Ключевые слова:
B-сплайн, минимальные сплайны, вейвлеты, сплайн-вейвлеты, вейвлетное разложение, блок фильтров.
Статья поступила: 01.06.2020 Переработанный вариант: 24.11.2020
Образец цитирования:
А. А. Макаров, С. В. Макарова, “О блоке фильтров в сплайн-вейвлетном преобразовании на неравномерной сетке”, Сиб. журн. вычисл. матем., 24:3 (2021), 299–311; Num. Anal. Appl., 14:3 (2021), 258–268
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sjvm782 https://www.mathnet.ru/rus/sjvm/v24/i3/p299
|
Статистика просмотров: |
Страница аннотации: | 123 | PDF полного текста: | 26 | Список литературы: | 23 | Первая страница: | 6 |
|