Сибирский журнал индустриальной математики
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор
Правила для авторов

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Сиб. журн. индустр. матем.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Сибирский журнал индустриальной математики, 2005, том 8, номер 2, страницы 83–102 (Mi sjim305)  

Эта публикация цитируется в 1 научной статье (всего в 1 статье)

Совместное апостериорное обнаружение и идентификация заданного числа квазипериодических фрагментов в последовательности по их обрывкам

А. В. Кельманов, С. А. Хамидуллин

Институт математики им. С. Л. Соболева СО РАН
Список литературы:
Аннотация: Рассматривается апостериорный (off-line) подход к решению задачи совместного обнаружения и идентификации квазипериодических фрагментов в числовой последовательности по их обрывкам. Изложено решение задачи для случая, когда число искомых фрагментов известно. Предполагается, что: 1) каждый искомый фрагмент числовой последовательности совпадает с элементом из заданного алфавита эталонных последовательностей, имеющих одинаковую длину, т.е. число членов; 2) для обработки потенциально доступен лишь обрывок (часть) от каждого искомого фрагмента; недоступные для обработки части этого фрагмента интерпретируются как потерянные данные; 3) номера членов последовательности, соответствующие началу искомого фрагмента и границам обрывков этого фрагмента, – детерминированные (неслучайные) величины; границы обрывков изменяются от фрагмента к фрагменту, а искомые фрагменты встречаются в последовательности квазипериодически; 4) гауссовская некоррелированная помеха скрывает от наблюдения последовательность, включающую квазипериодические обрывки эталонных последовательностей. Установлено, что сущность рассматриваемой задачи состоит в проверке совокупности гипотез о среднем случайного гауссовского вектора; мощность этой совокупности экспоненциально растет с увеличением размерности вектора, т.е. длины последовательности. Обоснован эффективный алгоритм апостериорного типа, гарантирующий максимально правдоподобное обнаружение и идентификацию; оценки временной и емкостной сложностей алгоритма связаны с параметрами задачи. Приведены результаты численного моделирования.
Статья поступила: 27.12.2004
Реферативные базы данных:
УДК: 519.2:621.391
Образец цитирования: А. В. Кельманов, С. А. Хамидуллин, “Совместное апостериорное обнаружение и идентификация заданного числа квазипериодических фрагментов в последовательности по их обрывкам”, Сиб. журн. индустр. матем., 8:2 (2005), 83–102
Цитирование в формате AMSBIB
\RBibitem{KelKha05}
\by А.~В.~Кельманов, С.~А.~Хамидуллин
\paper Совместное апостериорное обнаружение и~идентификация заданного числа квазипериодических фрагментов в~последовательности по их обрывкам
\jour Сиб. журн. индустр. матем.
\yr 2005
\vol 8
\issue 2
\pages 83--102
\mathnet{http://mi.mathnet.ru/sjim305}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2220144}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/sjim305
  • https://www.mathnet.ru/rus/sjim/v8/i2/p83
  • Эта публикация цитируется в следующих 1 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Статистика просмотров:
    Страница аннотации:323
    PDF полного текста:97
    Список литературы:59
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024