|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Локально-равновесное приближение в задаче о динамике плоского турбулентного следа в пассивно стратифицированной среде
В. Н. Гребеневa, А. Г. Деменковbc, Г. Г. Черныхa a Федеральный исследовательский центр информационных и вычислительных технологий, просп. Акад. Лаврентьева, 6, г. Новосибирск 630090, Россия
b Институт теплофизики им. С. С. Кутателадзе СО РАН, просп. Акад. Лаврентьева, 1, г. Новосибирск 630090, Россия
c Новосибирский государственный технический университет, просп. К. Маркса, 20, г. Новосибирск 630073, Россия
Аннотация:
Для исследования течения в дальнем плоском турбулентном следе в пассивно стратифицированной среде привлекается математическая модель, включающая в себя дифференциальные уравнения баланса энергии турбулентности, переноса скорости её диссипации, касательного турбулентного напряжения, дефекта плотности жидкости и вертикальной компоненты вектора потока массы. Алгебраическое усечение последнего уравнения приводит к известному градиентному соотношению для вертикальной компоненты вектора потока массы. Установлено, что при определённом ограничении на значения эмпирических постоянных математической модели и при согласующемся с математической моделью законе роста временного масштаба это соотношение является совместной дифференциальной связью модели. Показана эквивалентность локально-равновесного приближения для вертикальной компоненты вектора потока массы равенству нулю скобки Пуассона для обезразмеренных значений коэффициента турбулентной диффузии и осреднённой плотности. Приведены результаты численных экспериментов, иллюстрирующих теоретические результаты.
Ключевые слова:
дальний плоский турбулентный след в пассивно стратифицированной среде, метод дифференциальных связей, локально-равновесное усечение, численное моделирование.
Статья поступила: 22.02.2023 Окончательный вариант: 27.04.2023
Образец цитирования:
В. Н. Гребенев, А. Г. Деменков, Г. Г. Черных, “Локально-равновесное приближение в задаче о динамике плоского турбулентного следа в пассивно стратифицированной среде”, Сиб. журн. индустр. матем., 27:1 (2024), 16–28; J. Appl. Industr. Math., 18:1 (2024), 36–46
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sjim1270 https://www.mathnet.ru/rus/sjim/v27/i1/p16
|
Статистика просмотров: |
Страница аннотации: | 40 | PDF полного текста: | 2 | Список литературы: | 14 | Первая страница: | 8 |
|