|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry
Howard S. Cohla, Rebekah M. Palmerb a Applied and Computational Mathematics Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899-8910, USA
b Department of Mathematics, Johns Hopkins University, Baltimore, MD 21218, USA
Аннотация:
For a fundamental solution of Laplace's equation on the $R$-radius $d$-dimensional hypersphere, we compute the azimuthal Fourier coefficients in closed form in two and three dimensions. We also compute the Gegenbauer polynomial expansion for a fundamental solution of Laplace's equation in hyperspherical geometry in geodesic polar coordinates. From this expansion in three-dimensions, we derive an addition theorem for the azimuthal Fourier coefficients of a fundamental solution of Laplace's equation on the 3-sphere. Applications of our expansions are given, namely closed-form solutions to Poisson's equation with uniform density source distributions. The Newtonian potential is obtained for the 2-disc on the 2-sphere and 3-ball and circular curve segment on the 3-sphere. Applications are also given to the superintegrable Kepler–Coulomb and isotropic oscillator potentials.
Ключевые слова:
fundamental solution; hypersphere; Fourier expansion; Gegenbauer expansion.
Поступила: 20 мая 2014 г.; в окончательном варианте 9 февраля 2015 г.; опубликована 14 февраля 2015 г.
Образец цитирования:
Howard S. Cohl, Rebekah M. Palmer, “Fourier and Gegenbauer Expansions for a Fundamental Solution of Laplace's Equation in Hyperspherical Geometry”, SIGMA, 11 (2015), 015, 23 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma996 https://www.mathnet.ru/rus/sigma/v11/p15
|
|