|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Lowest Weight Representations, Singular Vectors and Invariant Equations for a Class of Conformal Galilei Algebras
Naruhiko Aizawaa, Radhakrishnan Chandrashekarb, Jambulingam Segarc a Department of Mathematics and Information Sciences, Osaka Prefecture University, Nakamozu Campus, Sakai, Osaka 599-8531, Japan
b Department of Physics, National Chung Hsing University, Taichung 40227, Taiwan
c Department of Physics, Ramakrishna Mission Vivekananda College,
Mylapore, Chennai 600 004, India
Аннотация:
The conformal Galilei algebra (CGA) is a non-semisimple Lie algebra labelled by two parameters $d$ and $\ell$. The aim of the present work is to investigate the lowest weight representations of CGA with $d = 1$ for any integer value of $ \ell$. First we focus on the reducibility of the Verma modules. We give a formula for the Shapovalov determinant and it follows that the Verma module is irreducible if $\ell = 1$ and the lowest weight is nonvanishing. We prove that the Verma modules contain many singular vectors, i.e., they are reducible when $\ell \neq 1$. Using the singular vectors, hierarchies of partial differential equations defined on the group manifold are derived. The differential equations are invariant under the kinematical transformation generated by CGA. Finally we construct irreducible lowest weight modules obtained from the reducible Verma modules.
Ключевые слова:
representation theory; non-semisimple Lie algebra; symmetry of differential equations.
Поступила: 22 августа 2014 г.; в окончательном варианте 31 декабря 2014 г.; опубликована 6 января 2015 г.
Образец цитирования:
Naruhiko Aizawa, Radhakrishnan Chandrashekar, Jambulingam Segar, “Lowest Weight Representations, Singular Vectors and Invariant Equations for a Class of Conformal Galilei Algebras”, SIGMA, 11 (2015), 002, 19 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma983 https://www.mathnet.ru/rus/sigma/v11/p2
|
Статистика просмотров: |
Страница аннотации: | 222 | PDF полного текста: | 50 | Список литературы: | 33 |
|