|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Configurations of Points and the Symplectic Berry–Robbins Problem
Joseph Malkoun Department of Mathematics and Statistics, Notre Dame University-Louaize, Lebanon
Аннотация:
We present a new problem on configurations of points, which is a new version of a similar problem by Atiyah and Sutcliffe, except it is related to the Lie group $\operatorname{Sp}(n)$, instead of the Lie group $\operatorname{U}(n)$. Denote by $\mathfrak{h}$ a Cartan algebra of $\operatorname{Sp}(n)$, and $\Delta$ the union of the zero sets of the roots of $\operatorname{Sp}(n)$ tensored with $\mathbb{R}^3$, each being a map from $\mathfrak{h} \otimes \mathbb{R}^3 \to \mathbb{R}^3$. We wish to construct a map $(\mathfrak{h} \otimes \mathbb{R}^3) \backslash \Delta \to \operatorname{Sp}(n)/T^n$ which is equivariant under the action of the Weyl group $W_n$ of $\operatorname{Sp}(n)$ (the symplectic Berry–Robbins problem). Here, the target space is the flag manifold of $\operatorname{Sp}(n)$, and $T^n$ is the diagonal $n$-torus. The existence of such a map was proved by Atiyah and Bielawski in a more general context. We present an explicit smooth candidate for such an equivariant map, which would be a genuine map provided a certain linear independence conjecture holds. We prove the linear independence conjecture for $n=2$.
Ключевые слова:
configurations of points; symplectic; Berry–Robbins problem; equivariant map; Atiyah–Sutcliffe problem.
Поступила: 23 августа 2014 г.; в окончательном варианте 17 декабря 2014 г.; опубликована 19 декабря 2014 г.
Образец цитирования:
Joseph Malkoun, “Configurations of Points and the Symplectic Berry–Robbins Problem”, SIGMA, 10 (2014), 112, 6 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma977 https://www.mathnet.ru/rus/sigma/v10/p112
|
Статистика просмотров: |
Страница аннотации: | 171 | PDF полного текста: | 43 | Список литературы: | 30 |
|