|
Эта публикация цитируется в 25 научных статьях (всего в 25 статьях)
$\kappa$-Deformations and Extended $\kappa$-Minkowski Spacetimes
Andrzej Borowieca, Anna Pachołbc a Institute for Theoretical Physics, pl. M. Borna 9, 50-204 Wrocław, Poland
b Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland
c Capstone Institute for Theoretical Research, Reykjavik, Iceland
Аннотация:
We extend our previous study of Hopf-algebraic $\kappa$-deformations of all inhomogeneous orthogonal Lie algebras $\mathrm{iso}(g)$ as written in a tensorial and unified form. Such deformations are determined by a vector $\tau$ which for Lorentzian signature can be taken time-, light- or space-like. We focus on some mathematical aspects related to this subject. Firstly, we describe real forms with connection to the metric's signatures and their compatibility with the reality condition for the corresponding $\kappa$-Minkowski (Hopf) module algebras. Secondly, $h$-adic vs $q$-analog (polynomial) versions of deformed algebras including specialization of the formal deformation parameter $\kappa$ to some numerical value are considered. In the latter the general covariance is lost and one deals with an orthogonal decomposition. The last topic treated in this paper concerns twisted extensions of $\kappa$-deformations as well as the description of resulting noncommutative spacetime algebras in terms of solvable Lie algebras. We found that if the type of the algebra does not depend on deformation parameters then specialization is possible.
Ключевые слова:
quantum deformations; quantum groups; quantum spaces; reality condition for Hopf module algebras; $q$-analog and specialization versions; $\kappa$-Minkowski spacetime; extended $\kappa$-deformations; twist-deformations; classification of solvable Lie algebras.
Поступила: 11 апреля 2014 г.; в окончательном варианте 11 ноября 2014 г.; опубликована 22 ноября 2014 г.
Образец цитирования:
Andrzej Borowiec, Anna Pachoł, “$\kappa$-Deformations and Extended $\kappa$-Minkowski Spacetimes”, SIGMA, 10 (2014), 107, 24 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma972 https://www.mathnet.ru/rus/sigma/v10/p107
|
Статистика просмотров: |
Страница аннотации: | 188 | PDF полного текста: | 42 | Список литературы: | 45 |
|