|
Эта публикация цитируется в 16 научных статьях (всего в 16 статьях)
Group Momentum Space and Hopf Algebra Symmetries of Point Particles Coupled to $\boldsymbol{2+1}$ Gravity
Michele Arzanoa, Danilo Latinib, Matteo Lotitoc a Dipartimento di Fisica and INFN, “Sapienza” University of Rome, P.le A. Moro 2, 00185 Roma, Italy
b Dipartimento di Fisica and INFN, Università di Roma Tre, Via Vasca Navale 84, I-00146 Roma, Italy
c Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221-0011, USA
Аннотация:
We present an in-depth investigation of the $\mathrm{SL}(2,\mathbb{R})$ momentum space describing point particles coupled to Einstein gravity in three space-time dimensions. We introduce different sets of coordinates on the group manifold and discuss their properties under Lorentz transformations. In particular we show how a certain set of coordinates exhibits an upper bound on the energy under deformed Lorentz boosts which saturate at the Planck energy. We discuss how this deformed symmetry framework is generally described by a quantum deformation of the Poincaré group: the quantum double of $\mathrm{SL}(2,\mathbb{R})$. We then illustrate how the space of functions on the group manifold momentum space has a dual representation on a non-commutative space of coordinates via a (quantum) group Fourier transform. In this context we explore the connection between Weyl maps and different notions of (quantum) group Fourier transform appeared in the literature in the past years and establish relations between them.
Ключевые слова:
$2+1$ gravity; Lie group momentum space; deformed symmetries; Hopf algebra.
Поступила: 13 марта 2014 г.; в окончательном варианте 15 июля 2014 г.; опубликована 24 июля 2014 г.
Образец цитирования:
Michele Arzano, Danilo Latini, Matteo Lotito, “Group Momentum Space and Hopf Algebra Symmetries of Point Particles Coupled to $\boldsymbol{2+1}$ Gravity”, SIGMA, 10 (2014), 079, 23 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma944 https://www.mathnet.ru/rus/sigma/v10/p79
|
Статистика просмотров: |
Страница аннотации: | 324 | PDF полного текста: | 53 | Список литературы: | 48 |
|