|
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
On the Linearization of Second-Order Differential and Difference Equations
Vladimir Dorodnitsyn Keldysh Institute of Applied Mathematics of Russian Academy of Science, 4 Miusskaya Sq., Moscow, 125047 Russia
Аннотация:
This article complements recent results of the papers [J. Math. Phys. 41 (2000), 480; 45 (2004), 336]
on the symmetry classification of second-order ordinary difference equations and meshes, as well as the Lagrangian formalism and Noether-type integration technique. It turned out that there exist nonlinear superposition principles for solutions of special second-order ordinary difference equations which possess Lie group symmetries. This superposition springs from the linearization of second-order ordinary difference equations by means of non-point transformations which act simultaneously on equations and meshes. These transformations become some sort of contact transformations in the continuous limit.
Ключевые слова:
non-point transformations; second-order ordinary differential and difference equations; linearization; superposition principle.
Поступила: 28 ноября 2005 г.; в окончательном варианте 13 июля 2006 г.; опубликована 16 августа 2006 г.
Образец цитирования:
Vladimir Dorodnitsyn, “On the Linearization of Second-Order Differential and Difference Equations”, SIGMA, 2 (2006), 065, 15 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma93 https://www.mathnet.ru/rus/sigma/v2/p65
|
|