|
Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)
Deformations of the Canonical Commutation Relations and Metric Structures
Francesco D'Andreaab, Fedele Lizziacd, Pierre Martinettida a I.N.F.N. – Sezione di Napoli, Italy
b Dipartimento di Matematica e Applicazioni, Università di Napoli Federico II, Italy
c Departament de Estructura i Constituents de la Matèria, Institut de Ciéncies del Cosmos, Universitat de Barcelona, Spain
d Dipartimento di Fisica, Università di Napoli Federico II, Italy
Аннотация:
Using Connes distance formula in noncommutative geometry, it is possible to retrieve the Euclidean distance from the canonical commutation relations of quantum mechanics. In this note, we study modifications of the distance induced by a deformation of the position-momentum commutation relations. We first consider the deformation coming from a cut-off in momentum space, then the one obtained by replacing the usual derivative on the real line with the $h$- and $q$-derivatives, respectively. In these various examples, some points turn out to be at infinite distance. We then show (on both the real line and the circle) how to approximate points by extended distributions that remain at finite distance. On the circle, this provides an explicit example of computation of the Wasserstein distance.
Ключевые слова:
noncommutative geometry; Heisenberg relations; spectral distance.
Поступила: 2 марта 2014 г.; в окончательном варианте 1 июня 2014 г.; опубликована 10 июня 2014 г.
Образец цитирования:
Francesco D'Andrea, Fedele Lizzi, Pierre Martinetti, “Deformations of the Canonical Commutation Relations and Metric Structures”, SIGMA, 10 (2014), 062, 14 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma927 https://www.mathnet.ru/rus/sigma/v10/p62
|
Статистика просмотров: |
Страница аннотации: | 220 | PDF полного текста: | 42 | Список литературы: | 41 |
|