|
Эта публикация цитируется в 47 научных статьях (всего в 47 статьях)
Gravity in Twistor Space and its Grassmannian Formulation
Freddy Cachazoa, Lionel Masonb, David Skinnerc a Perimeter Institute for Theoretical Physics, 31 Caroline St., Waterloo, Ontario N2L 2Y5, Canada
b The Mathematical Institute, 24-29 St. Giles’, Oxford OX1 3LB, UK
c DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK
Аннотация:
We prove the formula for the complete tree-level $S$-matrix of $\mathcal{N}=8$ supergravity recently conjectured by two of the authors. The proof proceeds by showing that the new formula satisfies the same BCFW recursion relations that physical amplitudes are known to satisfy, with the same initial conditions. As part of the proof, the behavior of the new formula under large BCFW deformations is studied. An unexpected bonus of the analysis is a very straightforward proof of the enigmatic $1/z^2$ behavior of gravity. In addition, we provide a description of gravity amplitudes as a multidimensional contour integral over a Grassmannian. The Grassmannian formulation has a very simple structure; in the N$^{k-2}$MHV sector the integrand is essentially the product of that of an MHV and an $\overline{{\rm MHV}}$ amplitude, with $k+1$ and $n-k-1$ particles respectively.
Ключевые слова:
twistor theory; scattering amplitudes; gravity.
Поступила: 21 ноября 2013 г.; в окончательном варианте 23 апреля 2014 г.; опубликована 1 мая 2014 г.
Образец цитирования:
Freddy Cachazo, Lionel Mason, David Skinner, “Gravity in Twistor Space and its Grassmannian Formulation”, SIGMA, 10 (2014), 051, 28 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma916 https://www.mathnet.ru/rus/sigma/v10/p51
|
Статистика просмотров: |
Страница аннотации: | 272 | PDF полного текста: | 49 | Список литературы: | 48 |
|