|
Эта публикация цитируется в 24 научных статьях (всего в 24 статьях)
The Painlevé Test and Reducibility to the Canonical Forms for Higher-Dimensional Soliton Equations with
Variable-Coefficients
Tadashi Kobayashia, Kouichi Todab a High-Functional Design G, LSI IP Development Div., ROHM CO., LTD., 21, Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan
b Department of Mathematical Physics, Toyama Prefectural University, Kurokawa 5180, Imizu, Toyama, 939-0398, Japan
Аннотация:
The general KdV equation (gKdV) derived by T. Chou is one of the famous $(1+1)$ dimensional soliton equations with variable coefficients. It is well-known that the gKdV equation is integrable. In this paper a higher-dimensional gKdV equation, which is integrable in the sense of the Painlevé test, is presented. A transformation that links this equation to the canonical form of the Calogero–Bogoyavlenskii–Schiff equation is found. Furthermore, the form and similar transformation for the higher-dimensional modified gKdV equation are also obtained.
Ключевые слова:
KdV equation with variable-coefficients; Painlevé test; higher-dimensional integrable systems.
Поступила: 30 ноября 2005 г.; в окончательном варианте 17 июня 2006 г.; опубликована 30 июня 2006 г.
Образец цитирования:
Tadashi Kobayashi, Kouichi Toda, “The Painlevé Test and Reducibility to the Canonical Forms for Higher-Dimensional Soliton Equations with
Variable-Coefficients”, SIGMA, 2 (2006), 063, 10 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma91 https://www.mathnet.ru/rus/sigma/v2/p63
|
|