|
Semistability of Principal Bundles on a Kähler Manifold with a Non-Connected Structure Group
Indranil Biswasa, Tomás L. Gómezb a School of Mathematics, Tata Institute of Fundamental Research,
Homi Bhabha Road, Bombay 400005, India
b Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM),
Nicolás Cabrera 15, Campus Cantoblanco UAM, 28049 Madrid, Spain
Аннотация:
We investigate principal $G$-bundles on a compact Kähler manifold, where $G$ is a complex algebraic group such that the connected component of it containing the identity element is reductive. Defining (semi)stability of such bundles, it is shown that a principal $G$-bundle $E_G$ admits an Einstein–Hermitian connection if and only if $E_G$ is polystable. We give an equivalent formulation of the (semi)stability condition. A question is to compare this definition with that of [Gómez T. L., Langer A., Schmitt A. H. W., Sols I., Ramanujan Math. Soc. Lect. Notes Ser., Vol. 10, Ramanujan Math. Soc., Mysore, 2010, 281–371].
Ключевые слова:
Einstein–Hermitian connection; principal bundle; parabolic subgroup; (semi)stability.
Поступила: 29 октября 2013 г.; в окончательном варианте 7 февраля 2014 г.; опубликована 12 февраля 2014 г.
Образец цитирования:
Indranil Biswas, Tomás L. Gómez, “Semistability of Principal Bundles on a Kähler Manifold with a Non-Connected Structure Group”, SIGMA, 10 (2014), 013, 7 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma878 https://www.mathnet.ru/rus/sigma/v10/p13
|
|