|
Эта публикация цитируется в 15 научных статьях (всего в 15 статьях)
Solving Local Equivalence Problems with the Equivariant Moving Frame Method
Francis Valiquette Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, B3H 3J5, Canada
Аннотация:
Given a Lie pseudo-group action, an equivariant moving frame exists in the neighborhood of a submanifold jet provided the action is free and regular. For local equivalence problems the freeness requirement cannot always be satisfied and in this paper we show that, with the appropriate modifications and assumptions, the equivariant moving frame constructions extend to submanifold jets where the pseudo-group does not act freely at any order. Once this is done, we review the solution to the local equivalence problem of submanifolds within the equivariant moving frame framework. This offers an alternative approach to Cartan's equivalence method based on the theory of $G$-structures.
Ключевые слова:
differential invariant; equivalence problem; Maurer–Cartan form; moving frame.
Поступила: 21 июля 2012 г.; в окончательном варианте 31 марта 2013 г.; опубликована 5 апреля 2013 г.
Образец цитирования:
Francis Valiquette, “Solving Local Equivalence Problems with the Equivariant Moving Frame Method”, SIGMA, 9 (2013), 029, 43 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma812 https://www.mathnet.ru/rus/sigma/v9/p29
|
|