|
Эта публикация цитируется в 11 научных статьях (всего в 11 статьях)
Binary Darboux Transformations in Bidifferential Calculus and Integrable Reductions of Vacuum Einstein Equations
Aristophanes Dimakisa, Folkert Müller-Hoissenb a Department of Financial and Management Engineering, University of the Aegean, 82100 Chios, Greece
b Max-Planck-Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
Аннотация:
We present a general solution-generating result within the bidifferential calculus approach to integrable partial differential and difference equations, based on a binary Darboux-type transformation. This is then applied to the non-autonomous chiral model, a certain reduction of which is known to appear in the case of the $D$-dimensional vacuum Einstein equations with $D-2$ commuting Killing vector fields. A large class of exact solutions is obtained, and the aforementioned reduction is implemented. This results in an alternative to the well-known Belinski–Zakharov formalism. We recover relevant examples of space-times in dimensions four (Kerr-NUT, Tomimatsu–Sato) and five (single and double Myers–Perry black holes, black saturn, bicycling black rings).
Ключевые слова:
bidifferential calculus; binary Darboux transformation; chiral model; Einstein equations; black ring.
Поступила: 12 ноября 2012 г.; в окончательном варианте 29 января 2013 г.; опубликована 2 февраля 2013 г.
Образец цитирования:
Aristophanes Dimakis, Folkert Müller-Hoissen, “Binary Darboux Transformations in Bidifferential Calculus and Integrable Reductions of Vacuum Einstein Equations”, SIGMA, 9 (2013), 009, 31 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma792 https://www.mathnet.ru/rus/sigma/v9/p9
|
Статистика просмотров: |
Страница аннотации: | 332 | PDF полного текста: | 56 | Список литературы: | 54 |
|