|
Эта публикация цитируется в 13 научных статьях (всего в 13 статьях)
Invertible Darboux Transformations
Ekaterina Shemyakova Department of Mathematics, SUNY at New Paltz, 1 Hawk Dr. New Paltz, NY 12561, USA
Аннотация:
For operators of many different kinds it has been proved that (generalized) Darboux transformations can be built using so called Wronskian formulae. Such Darboux transformations are not invertible in the sense that the corresponding mappings of the operator kernels are not invertible. The only known invertible ones were Laplace transformations (and their compositions), which are special cases of Darboux transformations for hyperbolic bivariate operators of order 2. In the present paper we find a criteria for a bivariate linear partial differential operator of an arbitrary order $d$ to have an invertible Darboux transformation. We show that Wronkian formulae may fail in some cases, and find sufficient conditions for such formulae to work.
Ключевые слова:
Darboux transformations; Laplace transformations; 2D Schrödinger operator; invertible Darboux transformations.
Поступила: 1 октября 2012 г.; в окончательном варианте 1 января 2013 г.; опубликована 4 января 2013 г.
Образец цитирования:
Ekaterina Shemyakova, “Invertible Darboux Transformations”, SIGMA, 9 (2013), 002, 10 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma785 https://www.mathnet.ru/rus/sigma/v9/p2
|
Статистика просмотров: |
Страница аннотации: | 289 | PDF полного текста: | 75 | Список литературы: | 75 |
|