|
Эта публикация цитируется в 25 научных статьях (всего в 25 статьях)
Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries
Changzheng Qua, Junfeng Songb, Ruoxia Yaoc a Center for Nonlinear Studies, Ningbo University, Ningbo, 315211, P.R. China
b College of Mathematics and Information Science, Shaanxi Normal University, Xi’an, 710062, P.R. China
c School of Computer Science, Shaanxi Normal University, Xi’an, 710062, P.R. China
Аннотация:
In this paper, multi-component generalizations to the Camassa–Holm equation, the modified Camassa–Holm equation with cubic nonlinearity are introduced. Geometric formulations to the dual version of the Schrödinger equation, the complex Camassa–Holm equation and the multi-component modified Camassa–Holm equation are provided. It is shown that these equations arise from non-streching invariant curve flows respectively in the three-dimensional Euclidean geometry, the two-dimensional Möbius sphere and $n$-dimensional sphere ${\mathbb S}^n(1)$. Integrability to these systems is also studied.
Ключевые слова:
invariant curve flow; integrable system; Euclidean geometry; Möbius sphere; dual Schrödinger equation; multi-component modified Camassa–Holm equation.
Поступила: 28 сентября 2012 г.; в окончательном варианте 27 декабря 2012 г.; опубликована 2 января 2013 г.
Образец цитирования:
Changzheng Qu, Junfeng Song, Ruoxia Yao, “Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries”, SIGMA, 9 (2013), 001, 19 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma784 https://www.mathnet.ru/rus/sigma/v9/p1
|
Статистика просмотров: |
Страница аннотации: | 363 | PDF полного текста: | 76 | Список литературы: | 57 |
|