|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Orthogonal Basic Hypergeometric Laurent Polynomials
Mourad E. H. Ismailab, Dennis Stantonc a Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA
b Department of Mathematics, King Saud University, Riyadh, Saudi Arabia
c School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
Аннотация:
The Askey–Wilson polynomials are orthogonal polynomials in $x = \cos \theta$, which are given as a terminating $_4\phi_3$ basic hypergeometric series. The non-symmetric Askey–Wilson polynomials are Laurent polynomials in $z=e^{i\theta}$, which are given as a sum of two terminating $_4\phi_3$'s. They satisfy a biorthogonality relation. In this paper new orthogonality relations for single $_4\phi_3$'s which are Laurent polynomials in $z$ are given, which imply the non-symmetric Askey–Wilson biorthogonality. These results include discrete orthogonality relations. They can be considered as a classical analytic study of the results for non-symmetric Askey–Wilson polynomials which were previously obtained by affine Hecke algebra techniques.
Ключевые слова:
Askey–Wilson polynomials; orthogonality.
Поступила: 4 августа 2012 г.; в окончательном варианте 28 ноября 2012 г.; опубликована 1 декабря 2012 г.
Образец цитирования:
Mourad E. H. Ismail, Dennis Stanton, “Orthogonal Basic Hypergeometric Laurent Polynomials”, SIGMA, 8 (2012), 092, 20 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma769 https://www.mathnet.ru/rus/sigma/v8/p92
|
Статистика просмотров: |
Страница аннотации: | 192 | PDF полного текста: | 53 | Список литературы: | 43 |
|