|
Эта публикация цитируется в 7 научных статьях (всего в 7 статьях)
Monodromy of an inhomogeneous Picard–Fuchs equation
Guillaume Laportea, Johannes Walcherab a Department of Physics, McGill University, Montréal, Québec, Canada
b Department of Mathematics and Statistics, McGill University, Montréal, Québec, Canada
Аннотация:
The global behaviour of the normal function associated with van Geemen's family of lines on the mirror quintic is studied. Based on the associated inhomogeneous Picard–Fuchs equation, the series expansions around large complex structure, conifold, and around the open string discriminant are obtained. The monodromies are explicitly calculated from this data and checked to be integral. The limiting value of the normal function at large complex structure is an irrational number expressible in terms of the di-logarithm.
Ключевые слова:
algebraic cycles, mirror symmetry, quintic threefold.
Поступила: 8 июня 2012 г.; в окончательном варианте 20 августа 2012 г.; опубликована 22 августа 2012 г.
Образец цитирования:
Guillaume Laporte, Johannes Walcher, “Monodromy of an inhomogeneous Picard–Fuchs equation”, SIGMA, 8 (2012), 056, 10 pp.
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/sigma733 https://www.mathnet.ru/rus/sigma/v8/p56
|
|